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viously, emphasis might be laid on the A1-0 and 
AI-O-OH linkages rather  than on the Si-O linkage. 
The framework of the structure consists of the AIO 4 
and A1030H chains which are similar in shape to those 
found in cyanite and other alumino-silicate minerals 
(see :Bragg, 1937). The chains are formed by 0 and 
O-OH octahedra around A1 holding the 0 - 0  edges 
in common. They are stretched parallel to each other 
and to the b axis and are bound together sidewise by 
Al(Fe), Ca and Si atoms, each of which is oxygen- 
coordinated as mentioned above. 

The chemical analysis of epidote (see for example, 
Dana, 1900) has invariably demonstrated tha t  the 
atomic ratio Fe:A1 is no more than 1:2. This may  be 
explained if we recognize the fact tha t  Fe atoms do 
not replace A1 atoms of the chains. 

The balance of valency is illustrated in Fig. 6 and 

the interatomic distances are given in Table 3. I t  is 
to be noted tha t  they have been considerably improved 
by  the present refinement. 
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In the course of an investigation of cylindrical Patterson functions as applied to the structures of 
fibrous polypeptides, the shape function for Gaussian distributions surrounding interatomic 
vectors in three-dimensional Patterson space projected cylindrically about a unique axis has been 
determined. This shape function is the Patterson space analogue of an electron distribution function 
in real space. The projected shape function is such that  for the large temperature and disorientation 
factors associated with fibrous polypeptides there are significant deviations in both peak location 
and size from an ordinary Patterson projection. 

An approach to the deduction of the structures of 
fibrous proteins and synthetic polypeptides from their 
X-ray diffraction diagrams lies in the calculation and 
interpretation of cylindrical Pat terson projections for 
these substances. Such functions were first described 
by MacGillavry & Bruins (1948), and have recently 
been calculated for poly-7-methyl-L-glutamate and 
collagen (Yakel & Schatz, to be published). In  the 
interpretation of these projections, it proved desirable 
to compare the experimental results with Patterson 
functions calculated from the distribution of inter- 
atomic vectors for one or more suggested models of the 
folded polypeptide chain. Simple comparison of the 
observed functions with maps containing the inter- 
atomic vectors represented by  suitably weighted 
points yielded little information, presumably owing to 
the poor resolution of the observed functions caused by 
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]imited data  and large temperature and disorientation 
factors. An a t tempt  was therefore made to obtain a 
mathematical  expression for the shape of the peaks in 
cylindrical Patterson projections which would contain 
variable parameters depending on temperature factor, 
etc. I t  was hoped tha t  a more representative picture of 
what  might be expected in the experimental projec- 
tions could then be derived from the theoretical shape 
functions. 

I t  can be shown tha t  a three-dimensional Patterson 
peak shape function, Pii(r), may be defined by the 
equation 

f : f ,  sin 2~rH Pii(r) = 4re fJ" 2x~r-------H-" Hg"dH ' (1) 

where f~ and fj are the atomic scattering factors of the 
two atoms involved in the interaction, H equals 
2 sin 0/2, and r is a radial coordinate measured from 
the end of t he  interatomic vector between atoms i and 
j in Pat terson space, as indicated in Fig. 1. The func- 
tion Pii(r) may be identified with a distribution func- 
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tion in Pa t te rson  space analogous to an electron distri- 
but ion funct ion in  real  crystal  space. Equa t ion  (1) 
m a y  be derived b y  a method  roughly similar  to tha t  

P~'~r__) = 0.1 

Fig. 1. A diagrammatic representation of the cylindrical 
projection of an interatomic vector whose cylindrical co- 
ordinates in Patterson space are #ij, z/j, and =ij, and whose 
shape is given by the Gaussian function Pij(r). The z axis 
of Patterson space is perpendicular to the plane of the paper. 
The integral of the function Pt~(r) around a circle of radius 
R, drawn at arbitrary height z, gives the contribution of 
the interatomic vector to the cylindrical Patterson projec- 
tion at R a~d z. A circle of radius r, such that Pij(r) = 
0-1Pij(0), is also shown in the diagram. 

used in  a der ivat ion of an  electron dis t r ibut io~ funct ion 
given b y  J a m e s  (1948, p. 404). If  the  atomic scattering 
factor is approximated  b y  the  equat ion 

f~ = z~ .e~  (-0-8HO).exp ( - ¼ B ~ ) ,  (2) 
where Zi is the  atomic n u m b e r  of the i th  a tom and B 
is a Debye  tempera ture  coefficient, equat ion (1) m a y  
be in tegra ted  in  closed form to give 

( 2~ ~3/2 f-2~ ~] 
Pij(r)  = ZiZ~\B--~.2  ] . exp  LB+3"2J " (3) 

This simple Gaussian dis t r ibut ion for a vector whose 
cylindrical  coordinates are r~j, z~i, and ~ i  mus t  now be 
subjected to a cylindrical  projection around the  z axis 
of Pa t te r son  space. The value  of the  projected func- 
t ion at  a distance R f rom the  z axis is given b y  

Q~j(R, z, re, zo) = R.P~i(R,  z, rq, z~j).d~ , (4) 
0 

where P~i(R,z,  rii, zii) is the  value of the  three- 

dimemion~l F~tters0n pe~k shape function (3) along 
a circle of radius R centered on the  z axis. As can be 
seen from Fig. 1, we have  

P~(R, z, n~, z,~) 
---- ZiZ~(M/yr) 312 . exp [ -M(z - z~ i )  2] 

×exp  [ -M(R~+r21-2Rr~  cos ~)] .  (5) 

Here, M equals  2 ~ / ( B + 3 . 2 ) ,  a funct ion of the tem- 
perature  coefficient. I t  seems clear t ha t  the  ~ii co- 
ordinate  of the  in tera tomic  vector does not  need to be 
t aken  into account for the evaluat ion of QiI(R, z, rii , zii ) 

so tha t  all  the  vectors m a y  be arb i t ra r i ly  placed in  a 
p lane containing the  z axis whose az imuth  angle is 
chosen as zero degrees. Wi th  the  in t roduct ion of (5), 
equat ion (4) becomes 

= 2R.Z~Z~. (M/r~) 3/~. exp [ -M(z - z~ j ) ' ]  

x exp [ - M ( R  2 + r~j)]. 0exp [2MRrq. cos ~]. d~ 

= 2R.  Z~Z i. (M/yr) 812. exp [ - M ( z - z i i ) 2  ] 
• × exp [ - M ( R 2 +  r2i)] . I  o (2MRr~j), (6) 

where Io(2MRr~i ) is the  zero-order Bessel funct ion of 
the first  k ind  for imag ina ry  arguments .  

I n  order to invest igate the  na ture  of the  
projected peak shape funct ion (6), curves of 
2R.exp[-M(Rg+r~i)] . Io(2MRr~i)  versus R for va- 
rious rii and  M values were calculated. These curves 
showed several  interest ing properties. First ,  al l  the  
peak m a x i m a  were displaced to values of R greater  
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Fig. 2. A plot of the difference between the position of the 
maximum of the function 2R. exp [--3l~(R~+~)] 
and r~ for various values of rij and for M = 0.3 and 0-6 A -2. 
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Fig. 3. A plot of the variation in the maximum height of 
the function 2R.exp [--M(R2+~])].I0(2MRrij ) with rij for 
values of M equal to 0.3 and 0"6 A -a. 
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than rii. This effect was largest for small values of rii 
and amounted to about 1 A for rii = 0 A and M = 
0.6 A -~. Fig. 2 shows the magnitude of these shifts 
as a function of rij for two representative values of M. 
Secondly, the relative maximum peak heights de- 
crease with increasing rij, as shown in Fig. 3. Although 
calculations have been made for only two M values, 
0.3 and 0.6 A -~, the results show that  both of the 
above-mentioned effects decrease in importance with 
increasing M, that  is, with smaller temperature fac- 
tors. With single-crystal data, for example, a Gaussian 
distribution would probably give a good approxima- 
tion to the peak shapes of a cylindrical Patterson pro- 
jection for all values of rij. 

I t  should be noted that  at large values of rij (over 
4"0 A for M = 0.6 A-2), the shape given by (6) is 
closely approximated by a Gaussian function whose 
maximum is displaced to a larger value of R by an 
amount given by extrapolation of a curve like that  
shown in Fig. 2. The larger the value of M, the smaller 
is the shift and also the smaller the value of r~j at 
which the approximation can be made. The maximum 
of the shifted Gaussian is similarly given by extra- 
polation of a curve such as that  shown in Fig. 3. 

Some idea of the appropriate value of M to use in 
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the construction of a synthetic cylindrical Patterson 
projection can be obtained by examination of the 
origin peak of the observed Patterson to which the 
theoretical function is compared. Equation (6) has a 
simple form for rij = 0 and the variation of the 
position of the maximum with M may be easily de- 
rived. For example, a value of 0.6 A -2 for M was 
suggested by the origin peak shape in the observed 
cylindrical Patterson projection for poly-~,-methyl-L- 
glutamate. This corresponds to a value of about 30 A s 
for the temperature coefficient B, a not altogether 
unanticipated figure for fibrous substances with a 
relatively large degree of disorientation. 

The complete calculation of Qij(R, z, rij, zij) for a 
set of interatomic vectors from a given model is ob- 
viously a tedious task, but some applications of IBM 
digital computing methods to the problem shorten the 
time required for such a calculation considerably. 
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A statistical investigation of the relation between the signs of structure factors shows that the 
probability of the result s(h)s(h') = s(h+h') is Q/(I+Q), where 

N 

Q = exp (2e-l[UhUh, Uh+h,]) and e = ~ n ~ .  
j=l 

These theoretical predictions are found to agree well with observation. 

1. Introduction 

Say-re (1952), Cochran (1952) and Zachariasen (1952) 
have shown that, for a centrosymmetrical structure, the 
signs of structure-factors of indices (hk[), (h'kT) and 
(h+h' ,k+k' , l+l ' )  tend to be related so that  the product 

is a positive quantity. This tendency increases with 
the magnitude of the product of the unitary structure 
factors. 

If the signs of some structure factors can be found 
unequivocally by the use of inequality relations (Har- 
ker & Kasper, 1948; Gillis, 1948; Karle & Hauptmann,  
1950) then the range of known s~gns may be extended 

by assuming that  the sign relationship holds when the 
structure factors involved are all large. I t  is even 
possible to allow for some inconsistencies which arise 
from occasional breakdowns of the relationship 
(Zachariasen, 1952). 

I t  would obviously be useful to be able to calculate 
in advance the probabihty that  the sign relationship 
will be obeyed, and this may be done by using the 
results of the theory developed in this paper. 

2. The statistical  theory 
For a structure containing N atoms and having a 
centre of symmetry, the unitary structure factor 
Uh+h',k+r,t+r may be expressed as 


